
Pierre Huguet App Inventor tutorial project page 1

Image and maps display Tutorial

with App Inventor

Quick view on resulting app

Pierre Huguet App Inventor tutorial project page 2

Image and maps display Tutorial

with App Inventor

Overview :

This app displays the pictures of monuments or places of interest and their location on maps or satellite

images with the user’s position or street-view display.

This document reviews design and development steps and attempts to point at good practices.

It illustrates simultaneous use of multiple App inventor components and external services, and tries to

provide enough detail for reuse by teachers’ in projects with students.

Trainer’s goal :

 Help participants experiment the complete process of an application development from initial design to

final tests.

 Increase the participants’ practical understanding of the importance of

o initial conception and of MVP design,

o key development rules including use of procedures, modular design, local rather than global

variables, inclusion of tests, etc.

 Show the practical connection between methods and lower risk for errors, and easier debugging.

 Increase the participants ease of use of app inventor

o internal resources such as TinyDB, camera, location sensors, (activity starter),

o or external services such as the Google static Map API which imply to search, read (and dis-

cuss) documentation and determine how to use it.

Learning objectives : Participants will be able to :

 paper prototype, make updates to the initial analysis, check emphasis,

 understand the role of conception,

 search for external documentation,

 check the overall benefit of initial conception and “good practices” even if they do not initially fully see

why.

Unit outline :

 Paper prototyping : 2 h

 Chapter 1 : 2h - display list of monument pictures

 Chapter 2 : 2h - delete/create/update uses the location sensor & camera

 Chapter 3 : 2h - with display of the monument’s and user position on a background map or satellite im-

age with zoom and pan functions or centering on the user’s or monument’s location.

 Chapter 4 : 2h – streetview and improvements

 Other : zoom on location configurations and functions (GPS, network)

 Discussion and debrief

Content :

Current version of this app is in App Inventor Gallery (search for : “image and mapping” or author

“pierre.huguet50”) with current .apk and .aia

You may also start or restart from intermediate versions corresponding to the end of each chapter according to

teaching purposes.

Note :

This tutorial is a draft to be completed … It will probably be broken down into separate “smaller pieces” to be

easier to use.

Pierre Huguet App Inventor tutorial project page 3

1. Introduction ... 4

2. What you’ll Build.. 4

3. What you’ll Learn ... 4

4. General app design : MVP and paper prototyping ... 5

5. Getting started / data preparation .. 6

6. Designing the components .. 7

7. Chapter one: Start and display monuments’ pictures ... 9

7.1. Global data definitions / initialization at application start .. 9

7.2. Initialization at startup & Save on exit .. 10

7.3. Write a procedure to display the monument’s picture .. 12

7.4. Navigate form one monument to the next or previous .. 12

7.5. End of chapter one.. 14

8. Chapter two : delete-add-update monuments’ list ... 15

8.1. Delete monuments from list ... 15

8.2. Create and update monuments .. 15

The createOrUpdate procedure. .. 15

The BtnUpdateLoc click event: .. 17

The BtnNewPicture click event: ... 17

The BtnCancel click event : .. 18

 The BtnValidNew click event : .. 18

The BtnValidUpdate click event : ... 18

The updateMonumentAtIndex procedure : ... 18

The Checkinput procedure : .. 18

The ExitCreateUpdate procedure : .. 18

8.3. Chapter 2 completed ... 19

9. Chapter 3 : Display maps and satellite or aerial imagery ... 20

9.1. Introduction to static maps API and HTTP message .. 20

9.2. Display map procedure with HTTP message .. 21

9.3. Map handling routines .. 22

9.1. Tuning to Wifi Bandwidth... 24

9.2. Add help button and choice of language .. 25

9.3. miscellaneous ... 26

9.4. Switch to map/monument when canvas touched .. 26

9.5. Chapter 3 completed ... 27

10. Debug/Tune /Tests /Doc/terrain feedback .. 28

11. Chapter 5 : feedback from terrain and updates ... 30

12. Chapter 4 : other Addons - improvements ... 31

12.1. multilingual user manual ... 31

12.2. Chapter 4 : Adding streetView .. 32

12.3. Re-organize init and exit ... 33

13. Global software View .. 34

14. Bibliography, Acronyms, Definitions, Acknowledgments ... 35

14.1. Bibliography ... 35

14.2. Acronyms.. 35

14.3. Definitions .. 35

14.4. Acknowledgments .. 35

Pierre Huguet App Inventor tutorial project page 4

1. Introduction

Pictures, maps and aerial or satellite images are basic blocks for many apps, in connection with camera

and location sensors (GPS, Wifi, GSM). This tutorial will review common methods to acquire and

display pictures and handle maps in a mobile background.

This tutorial is provided with the sample app for each step at this link : (TBD)

and you may follow the same tutorial on videos at this link : (TBD)

2. What you’ll Build

You will build an application which acquires and displays pictures of monuments and their location on

maps or satellite images with interactive change of position (panning), scale (zoom) or map type. You

will :

 (chapter 1) view monument pictures from a list provided with the app data,

 (chapter 2) update this list, delete and add new monuments with their location and picture

from smartphone sensors (GPS, Wifi, …) and camera,

 (chapter 3) query and display maps and satellite imagery from web services, handle the zoom

factor, move horizontally (panning) and change the map type, with added markers showing the

location of monuments as well as yours.

You may later add to this base with information on the monuments with audio, video, … measurement

of distances, call for new services, … with no limit but your imagination.

3. What you’ll Learn

 Draft the app with paper prototyping,

 Upload images and icons at App development stage,

 Load an image from the camera,

 Load an image from smartphone gallery,

 Refer to an image location on the web,

 Load an image from the web,

 Read and process the smartphone location sensors,

 Use a Web server API with HTTP requests for maps and handling of :

o location, scale or zoom factor,

o map type,

o overlays with markers for your position and other objects,

 Map pixel size,

 Interactive management of the map.

Pierre Huguet App Inventor tutorial project page 5

4. General app design : MVP and paper prototyping

First thing to do is to draft a general view of the application.

You should decide what is your “Minimal Viable Product” or MVP which is the minimum that you

need to include in your app to start testing with a prototype. Then draw the screens on paper (e.g.

“paper prototyping”), show them to your friends (as if they were potential customers) and explain how

your app works :

Is it clear for them ? do they like it ?

would they use it they had it ?

what would they like that is not there ?

what is there that they do not understand or would not use ? …

Stick to your main goals but tune according to their comments, until they understand and like it.

This paper prototyping will also give you a good view of what you will need such as the list of

components, variables, etc.

Time that you spend now will be useful later to remember where you are when coding details.

This will also avoid major design errors which could impact the structure of the app.

 It is a good practice to have a prototype showing key concepts as early as possible, rather than

wait for a full app. Do what’s important and easy first, then come back after feedback.

Here is an example of what may come out and that we will use as our guideline.

Main monument view : Screen state 1 shows :

A top main horizontal arrangement with

 buttons/icons to switch from the photo to map

display, switch to previous or next monument in the

list, create, delete or update a new monument item.

A vertical picture arrangement which contains :

 a text label with name and latitude/longitude of the

monument,

 a canvas to display the picture of each monument.

When clicking on the first icon (or on the photo itself) we switch to the

Map view : Screen state 2 contains

Below the main buttons arrangement (which could be hidden), a vertical map arrangement becomes

visible and contains :

 an horizontal arrangement with button/icons to handle

map/image display

1 toggles from map to image

2-3 zoom in and out

4-5-6-7 pan up/down, left/right

8 center map on user’s location

9 center map on monument’s location

 an image canvas to hold the map or image

Pierre Huguet App Inventor tutorial project page 6

When clicking on the new or update icons in the monument

view we switch to a “create/update” screen configuration : which

shows :

 a vertical arrangement to edit monument parameters with

o text title label

o monument name, latitude, longitude, marker and picture

url (or file)

o an horizontal arrangement with 3 buttons to

 update picture

 update localization from smartphone sensors

 cancel update

 the same vertical photo arrangement as the monument view (if photo available).

Picture acquisition screen : when the update picture button is clicked

 a vertical arrangement with different picture sources buttons appears

o picture from camera,

o load picture from gallery, (to do later)

o picture as web reference, (to do later)

o download picture from web. (to do later)

5. Getting started / data preparation

Prepare an initial list of monuments with their name, latitude and longitude

and a picture (preferably in portrait mode) with a size which should preferably

stay around 512 pixels. You can easily obtain the latitude or longitude of a

place from services on the web (ex : http://www.coordonnees-gps.fr/)

name : Tour Eiffel Notre Dame de Paris Prison de la conciergerie

latitude : 48.85826 45.8532788 48.8562756

longitude : 2.294507 2.3490083 2.3457541

Marker (letter) : T N C

filename or URL : TourEiffel.jpg NotreDameDeParis.jpg conciergerie.jpg

Prepare icons which you will need from a source in the public

domain or Creative Commons. ex :

https://design.google.com/icons/. (Use the png format, not svg).

http://www.coordonnees-gps.fr/
https://design.google.com/icons/

Pierre Huguet App Inventor tutorial project page 7

Connect to App inventor web site and start a new project call it “monuments” and also name the

screen title “monuments”

6. Designing the components

Development will be incremental but since we have a global view with paper prototyping we can try

to list and include most of the components we should need :

External or hidden resources

Component type Palette Group What you will

name it

What do we need it for

Notifier User Interface Notifier1 Display warnings, debug

Camera Media Camera1 Take monument’s pictures

Location Sensor Sensors PositionSensor1 Read position from smartphone

(GPS or other sources)

TinyDB Storage TinyDB1 Store and restore list of monuments

Activity starter Connectivity ActivityStarter1 Download image files from the net

Components for User Interface display (chapters 1 and 2)

Component type Palette Group given name icon What do we need it for

Screen1

TOP MENU

Horizontal arrangement Layout HarTopButtons Insert buttons to display

photographs

Button User Interface BtnMonumentMap

Toggle between photo and map

display

Button User Interface BtnPrevious

Display previous monument in list

Button User Interface BtnNext

Display next monument in list

Button User Interface BtnNew

Add a new monument to the list

Button User Interface BtnDelete

Delete current monument from the

list

Button User Interface BtnEdit

Edit Monument properties

Button User Interface BtnSave

Save monuments to TinyDB

MONUMENT

DISPLAY

Vertical arrangement Layout VarMonumentDisplay Display monument pictures and

info

Label User Interface LblMonument Show name, latitude and longitude

Canvas Drawing and

animation

CanvasMonument Display photo of monument

Pierre Huguet App Inventor tutorial project page 8

Components for User Interface display for chapter 3

(you may skip at first, but it can be a good idea for a global view with default data)

MAP DISPLAY

Vertical arrangement Layout VarMapDisplay Display and handle maps

Horizontal arrangement Layout HarMapButtons Show map display buttons

Button User Interface BtnMapType text Toggle roadmap/satellite

Button User Interface BtnZoom

Zoom in

Button User Interface BtnUnzoom

Zoom out

Button User Interface BtnUp

Pan up/north

Button User Interface BtnDown

Pan down (south)

Button User Interface BtnLeft

Pan left (west)

Button User Interface BtnRight

Pan right (East)

Button User Interface BtnHere

Center map on my location

Button User Interface BtnLocMonum

Center map on monument’s

location

 It is good practice to keep the UI component’s type in the component’s name, so that you easily 

know what you are dealing with when coding blocks. We have used “Btn” for buttons, “Har” for

horizontal arrangements, “Var” for vertical arrangements.

You may prefer other conventions, what is important is that you have one which is easy to re-

member, explain and share.

Think that you might share your code and others will need to understand what you have done. Use

coding conventions at group level. This will make development a better experience.

Pierre Huguet App Inventor tutorial project page 9

7. Chapter one: Start and display monuments’ pictures

7.1. Global data definitions / initialization at application start

Application starts with definitions (or initialization) of global variables which will be shared by all

groups of program blocks (each one starting with an event : event handlers).

The constants and variables we need to initialize are the following

Variable name Definition Comment

listMonuments List of monuments Documents are list themselves

indexMonument Index of current monument Index of the monument which is

currently being displayed or

processed

monument

dangerous use …

see discussion

List which defines a sample document This variable is mainly used for

temporary storage of the current

document, so as to avoid navigation

in lists of lists.

The problem with this variable is its

possible use as a shortcut to existing

content which may be changed

outside user’s intent

monumentDisplayMode Boolean which indicates the current

display state

True if current display state shows

monument picture.

False otherwise e.g. map display

pictureURL Text variable for picture URL This variable is used for temporary

storage of the URL when looking for

pictures on the web (this may also

contain a local file name)

checked Boolean variable This variable is used temporarily to

check the validity of new input

Constant name Definition Comment

INDEX_NAME Index of monument LIST holding the

name as text

Common name of the monument

INDEX_LAT Index of monument LIST holding the

Latitude as real number

Latitude of the monument

INDEX_LONG Index of monument LIST holding the

Longitude as real number

Longitude of the monument

INDEX_MARKER Index of monument LIST holding the

character to used as a marker

Used when displayed on the map

INDEX_FILE Index of monument LIST holding the

file name or URL

URL or File name. should be jpg, png

of gif format

 It is good practice to name constants with CAPITAL LETTERS and to start variables with lower-

case letters with capital letters used for visual separation of Words (Never use blanks, use under-

score if you need).

Pierre Huguet App Inventor tutorial project page 10

This leads to the following initialize blocks :

o The list of monuments

o The index for the current document item

Each monument is defined itself as a list with name, latitude, longitude, marker type and file or URL.

This list may change as we add new information. (It is a good practice to define constants to hold the

index of each parameter, so that we will only have to change it at a single place if needed).

1 for name index

2 for latitude index

3 for longitude index

4 file (or URL) index

We may also use of single monument variable to hold a

temporary monument (we will see however that this is

dangerous, and it will be safer to handle temporary lists as

local variables).

And when searching on the web we will use a variable for URL.

For chapter 3 with the map and satellite image display we will need other variables:

o Center latitude,

o Center longitude,

o Zoom factor (scale),

o Maptype (roadmap or satellite),

then

o HTTP request message (sent to the Map Web server),

o and my current latitude and longitude.

For safety reasons (to avoid mistakes) we will use 2 constants SPACE and NULL which look the same

in the text blocks but are different. (but we will define them as local variables whennecessary.

We will also need a global “checked” used to control the validity of

new input.

7.2. Initialization at startup & Save on exit

When starting, the application has to recover previous or default data and check that everything is in

good shape. We do this when first screen is initialized screen1.Initialize.

 It is good practice to deal at the same time with what happens on application start up and applica-

tion exit because what you catch when starting is what you saved before exit. screen1.Backpressed

These program blocks should be consistent : keep them close to each other on your screen.

We will also deal with a “save” function to save the list of monuments at anytime.

To keep things manageable for future changes, we will write a procedure storeMonumentsData to

save data on TinyDB and restoreMonuments Data to retrieve it from TinyDB.

 It is good practice to put code in a separate procedure (as if subcontracted) as soon as the blocks

do a consistent set of operations which may be used several times, may require dedicated debug-

ging, or may change with time. This will make debugging easier and group programming possible.

Keep track of procedures and what they do in your paper files.

Pierre Huguet App Inventor tutorial project page 11

To save the information on monuments, we will use TinyDB which handles tag/value pairs with 2

procedures :

 Procedure storeMonumentsData uses the TinyDB1. StoreValue to store the list of monuments

“listMonuments” under the “listMonuments” tag.

 Procedure restoreMonuments Data sets the ”listMonuments” variable with the result of

TinyDB1. GetValue with the “listMonuments” tag or an empty list if not found. I then checks if

the list is empty and if yes replaces the list of monuments with a default preset list in the app.

These procedures will simply be called at screen startup, upon exit (backpress) or on demand :

We will however disable the exit function during development time because the close application

block is not supported in debug mode and we do not want to lose time with this. For now, we will save

our list with the “save” button.

The third procedure restoreDefaultMonumentsData is called by restoreMonuments Data when

nothing is found in the database. The corresponding data should have been prepared (see above § 5)

and images preloaded into the app at development time.

Do not to forget ! in case the files are on your phone, but not loaded into the app (and .apk), the app

will work on your phone, but not on others …(I did the mistake … :=)

 Trying the app on a phone which has not been used for development is a

safe and recommended step before app broadcast.

The initialization block which sets the corresponding data is illustrated

below for its beginning. And you can check in the components that the

corresponding files have been loaded into the app.

Note : Image files which are not stored with TinyDB should remain available (as local file or URL)

Pierre Huguet App Inventor tutorial project page 12

7.3. Write a procedure to display the monument’s picture

Display of the current monument’s picture occurs at startup and will occur many times later. We may

also want to customize it, add information, audio, video ... and who knows what you will imagine.

For this we need a unique “displayMonument” procedure to display the current monument, e.g.

monument at index “indexMonument” in the list of monuments : “listMonuments” .

What we have done in the components design is to group all this information in a vertical arrangement

called “VarMonumentDisplay” and we have grouped the Map display in the horizontal arrangement

called “VarMapDisplay”. We will often switch from to the other and the routine will :

 Set the map display off (in case it was visible)

 Set the document display on (in case it was off)

 Copy the current document from the list into the temporary “monument” variable

 Set the canvas image “canvasMonument.backgroundImage” to the monument image file

(which is at index defined at index “INDEX_FILE”)

 Update the information displayed in the label “LblMonument” with the name of the

monument (INDEX_NAME), the latitude (INDEX_LAT) and the longitude (INDEX_LONG)

with trimming to 5 decimals for a resolution around 1 m, which is far enough.

Note : the above block shows the monument variables as a local instead of global variable

(used in early versions of the code). Both worked, but this is a security improvement which

will be discussed later.

7.4. Navigate form one monument to the next or previous

OK, now we have this first monument displayed, but nothing to do …

Let us begin with writing the code to switch display to previous or next monuments with the previous

button btnPrevious and next button and BtnNext .

This may be called many times so we will write 2 procedures : previousMonument & Next Monument

Try to code these routines, then check and continue reading … :

Pierre Huguet App Inventor tutorial project page 13

What we have to do for previous is substract 1 to the monument index, and if smaller than 1, set it to

the length of the list and call displayMonument.

Similarly for next, add 1 to the monument index, and if greater than length of the list, set it to 1, and

call displayMonument.

To make it easier for big fingers on small icons, we will also swap images when the user flings left

and right on the image, and - to prepare for chapter 3 - we will also anticipate for map display with the

following rule : previous picture when swing to the right (-45° to +45°), next picture when swing to

the left (opposite e.g. <-135° and >135°), otherwise (up and down) switch to map display. This last

will not work for now but we will be ready. This sums up to the following blocks :

Pierre Huguet App Inventor tutorial project page 14

7.5. End of chapter one

This how your blocks could look like

(with backpressed and displayMap disabled)

Pierre Huguet App Inventor tutorial project page 15

8. Chapter two : delete-add-update monuments’ list

Now that we can view the list of monuments with their picture and location we have to deal with :

 Deletion of an existing document,

 Creation of a new one with picture from the camera and location from the smartphone sensor,

 Update / change parameters of existing monuments.

8.1. Delete monuments from list

The delete function is straightforward. The only thing to do is to suppress the current index

“indexMonument” in the list of monuments “listMonuments” (you may wish to add a confirmation

checkbox).

A reset button has also been added to restore default monuments (helpful for debug)

8.2. Create and update monuments

Create and update, have many things in common, from UI display utility functions which check

inputs. So what we will do is write a single set of functions for both with “mode” as a calling

parameter wich will be “create” or “update” according to what we want to do.

 The createOrUpdate procedure.

The CreateOrUpdate procedure will display and init the adequate UI then exit .

App will then wait for the user to click on one of the buttons.

 Setup the GUI and init values by calling the CreateOrUpdate procedure which will :

 Hide the top buttons horizontal arrangement HarTopButtons

 Hide Vertical arrangement for monument display VarMonumentDisplay

 Hide Vertical arrangement for map display (anticipate) VarMapDisplay

 And make the Create or update vertical arrangement visible VarCreateUpdate

(we could have put this in a procedure)

 Then initialize the display content according to the mode argument (“create” or “update”) :

o if in create mode, default new values will be set in the UI as initial proposal

o if in update mode, the values of the monument at current index are used.

Pierre Huguet App Inventor tutorial project page 16

The following procedure has many blocks, because there are 2 cases and many parameters, but is not

very difficult.

Note : you may wonder why a local monum variable is used instead of the monument variable

which could well do the job. Try to say why before reading on … … … …

…

…

The reason is that monument variable can be changed at anytime by any routine. Probably not

now, but keep in mind that with this “event driven” codding, anything can happen at anytime.

You may well start doing something else before completing your update, and who knows …

this may well change your monument which is a global variable.

So what we do here, since we do not know what can happen, is to make monum a local copy

of the monument global variable. This local copy will not be changed from outside the

simple reason that this variable is NOT known outside this routine.

Yeah ! we are safe … but remember this “good practice” with local variables will decrease the

number of headaches on bugs which are very difficult to handle because you do not know

where to find the error.

Pierre Huguet App Inventor tutorial project page 17

Once create/update UI is set with default values, user has the choice to :

 Update textboxes manually (name, latitude, longitude, marker, file name or URL) . this is the

only way to update the name which should not be blank,

 Click on the following buttons :

o New picture : to take a picture from the smartphone camera,

o Lat, long to update position from the smartphone loc sensors,

o Cancel to exit without creation or update,

o Either Valid create or update.

We will see that these functions use 3 utility procedures (checkinput, exitCreateUpdate and

resetMonument) which we will describe after the code behind each button.

 The BtnUpdateLoc click event:

This function will simply read from the phone loc sensor and update the corresponding text boxes for

latitude, longitude and accuracy. These values should be checked before validation of update or create.

When you are trying this app when working inside, the GPS will

probably not work. Most smartphones should still output a less precise

value from the WIFI or GSM information, but this does not seem to be

always the case, so you may prefer (at least when inside) to setup the

localization mode to this.

 The BtnNewPicture click event:

This function will simply call for the camera function of your phone and wait for the

Camera1.AfterPicture event to return the filename for the picture, which will then be displayed.

An other way to update the picture is to copy/paste the URL of the picture in the adequate textbox. It

Will then be displayed when this textbox loses cursor focus.

Note : web URL for images are fine (you can copy/paste their address) but they will read from he

internet each time they are called, so do not choose pictures which are too big.

Note : selection of the back/front camera can be done on the smartphone camera app, as well as

selection of image resolution.

Pierre Huguet App Inventor tutorial project page 18

The BtnCancel click event :

This will simply reset the monument global variable (not mandatory) and call

an exit function which will reset visibility of adequate UI with monument

display.

 The BtnValidNew click event :

This will do sanity checking on the input by calling the

checkinput procedure. If this procedure returns true, it will

insert a new item in the “listMonuments” list of monuments

then call for updateMonumentAtIndexMonument which will

update of the contents of this new item with what is in the

textboxes. then exit through the common exitCreateUpdate

procedure.

If checkinput returns false, it will warn the user.

The BtnValidUpdate click event :

This will do the same except for insertion of a new item in

the list of monuments. The current inde will therefore be

updated.

If false a message is returned to help the user understand

why creation is refused.

The updateMonumentAtIndex procedure :

This procedure updates the content of the monument which is at

index “indexMonument“ in the list of documents

“listMonuments”.

It reads textboxes and replaces the name, latitude, longitude,

marker and file name or URL for the corresponding indexes

defiens with the constants.

The Checkinput procedure :

This procedure simply checks that the name,

latitude, longitude or filename are not empty. It

returns true if OK, otherwise false with a

warning displayed.

Control algorithms should be improved but we

wanted to give a flavor.

The ExitCreateUpdate procedure :

Resets the display to the monument configuration.

Pierre Huguet App Inventor tutorial project page 19

8.3. Chapter 2 completed

Pierre Huguet App Inventor tutorial project page 20

9. Chapter 3 : Display maps and satellite or aerial imagery

9.1. Introduction to static maps API and HTTP message

Open street map, Google, IGN and other organizations have setup web services to send maps on user’s

requests. We will use the “Google static map API” which returns an image file containing the map

under jpeg, png of Gif format.

The request takes the form of an http message or URL (Resource locator) which contains the

parameters that the server needs to build the map : latitude, longitude, zoom, map type, … We will use

this URL exactly as we did with file name or http URL of the monument pictures.

What is new here is that we add parameters within our URL to specify the map content.

The way we specify the content in the http message is defined in the API (Application Programming

Interface) of the Web service API we use. In our case the Google Static Maps Developer Guide, cf.

https://developers.google.com/maps/documentation/static-maps/intro#quick_example.

This http message is a single line of text starting with a base address followed by a question mark and

the list of parameters are separated an ampersand ‘&’. Lists within a parameter use the ‘|’ to separate

items (ex : when you want to draw a line with several points).

Note : this implies that these characters : “&”, “|”,’%’ and other such as white spaces are used as

separators and forbidden in the rest of the message. In which case they must be replaced by

their hexadecimal coding with %. For example : “|” must be replaced by “%7C”. This called

“html URL encoding” (App Inventor has a function that does it and you can also find tools

online such as : http://www.w3schools.com/tags/ref_urlencode.asp)

After reading the API documentation (see above link), you will find that :

The HTTP base address is : https://maps.googleapis.com/maps/api/staticmap?

Then we have the following parameters (separated by ‘&’):

center : defines latitude and longitude of map center (e.g. "40.714728,-73.998672"). It may al-

so be an address.

size : defines the rectangular dimensions of the map image (e.g. canvas size) with a string of

the form {horizontal_value}x{vertical_value}.

Note : We must be careful that the size is not too big because it will generate data

exchange on the web and delay times when internet bandwidth is low. It

may be better to use an image size which is smaller than the canvas size,

as long as the aspect ratio (e.g; height/width) is kept.

zoom : defines the display scale map with a numerical value : 0 for world coverage, 10 for cit-

ies and 21 for street level.

Note : zoom determines the pixel size : adding 1 to zoom level will decrease pix-

el size by a factor of 2. We will need pixel size when panning and an ap-

proximate evaluation of pixel size in degrees of latitude or longitude is

(this formula is OK for panning but requires checking for other purposes)

maptype : defines the type of map to construct. We will use and switch between roadmap and

satellite (also available in API: hybrid and terrain).

https://developers.google.com/maps/documentation/static-maps/intro#quick_example
http://www.w3schools.com/tags/ref_urlencode.asp

Pierre Huguet App Inventor tutorial project page 21

markers : defines markers overlaid on the map. We use them for user and monument’s loca-

tions.

Note : Markers specification takes the form of
markers=markerStyles|markerLocation1|Location2| …

where we select color and label, then provide locations. As earlier remind-

ed the ‘|’ character is not allowed in HTTP requests and must be replaced

by % 7C.

Note : Static Map API messages may contain other optional parameters :

format : defines the format of the resulting image with PNG as default.

language : defines the language to use for display of labels on map tiles.

region (optional) defines the appropriate borders to display.

Let us now build a sample request :

(where we have done URL encoding by replacing the forbiddet ‘|’ by its hexadecimal value ‘%7C’)

Base address https://maps.googleapis.com/maps/api/staticmap?

Center center = 48.85826, 2.294507

Zoom level &zoom=10

Size &size=320x320

Map type &maptype=roadmap

&maptype=satellite

Markers for monument &markers=color:blue%7Clabel:M%7C48.85826, 2.294507

Markers for my position &markers=icon:http://maps.google.com/mapfiles/ms/micons/man.png%7C

9.2. Display map procedure with HTTP message

We are now ready to build our http request on App inventor and to change the location, zoom factor,

maptype, … as we want.

We have the following global variables :

center latitude initialized to 48.869

center longitude initialized to 2.434

zoom initialized to 10

mapType initialize to roadmap

HTTP message initialize to null

MyLatitude initialized to 48.869

MyLongitude initialized to 2.434

NULL constant initialized to null

ESPACE constant initialized to blank space

Pierre Huguet App Inventor tutorial project page 22

The map display procedure starts with making the VarMonumentDisplay hidden and the Var

MapDisplay visible. Then it checks for the height and width of the map canvas, but if it is set to

automatic, the first answer is 0 and we need this information as the size parameter in the HTTP query.

This is a very good subject to make you lose time … trying to adjust the automatic/fill parent

component setup or the choix between “fixed or

responsive” value of the Screen “Sizing” parameter.

Read the doc and test … trying to anticipate wht

will come out on phones that you do not know.

To make it short, we will ask for a square map with

width = height = min (screen width, screen height)

which should be OK in the portrait modethat we

have chosen.

Note : set and get canvas display height and width report values which sometimes suprising and

require more reading of the documentation

Following the HTTP

request with center

latitude, longitude, zoom,

width, height and

maptype

We add the marker for the

current monument :

Then the marker for the

user’s (or smartphone)

location :

The message is complete

but we will suppress

possible blank spaces and

set the canvasMap Image

to this URL.That’s it.

9.3. Map handling routines

Zoom and unzoom

The only thing to do is

change the zoom value which

is a global variable and call

displayMap

Pierre Huguet App Inventor tutorial project page 23

Pan up, down, left and right

A panoramique function is written which computes the latitude and longitude range for the window.

This range depends on the zoom factor and canvas height and width. It them changes the center lat and

longitude for an amount which is the input x and y multiplied by the range.

Then the up, down, left and right panning functions are simple calls to this panoramique function.

Maptype :

The only thing to do is to toggle maptype between

“roadmap” and “satellite” (see API’s documentation)

then call displayMap.

Toggle between map and picture display with

(BtnMonument) :

Call the adequate display procedure and update the

MonumentDisplayMode accordingly.

Pan by dragging with finger on the map :

This with “finger dragging” panning mode

may be more familiar. It may however gen-

eral higher flow on the net with significant

waiting time.

The thing to do is measure the difference of coordinates, divide by canvas size and call panoramique.

Pierre Huguet App Inventor tutorial project page 24

9.1. Tuning to Wifi Bandwidth

Recent smartphones and tablets have better and better resolution, which means that the size of maps

and images to fill all these pixels will be bigger and bigger and therefore much longer to transmit

through Wifi or cellular network.

One way app inventor deals with this is the screen sizing parameter which can be set to “Fixed”

instead of “Responsive”.

We have not used this solution but added a global lowBw variable and a Low bandwidth button

”btnLowBw” which – when true - will let us divide by 2 the height

and width requested from the map server (dividing by 4 the number of

pixels transmitted).

We also need to divide pixel

size by 2 in the panning

procedure. (Not very clean way,

but will do)

The button will be a toggle between the 2 size and you should see the difference (especially with the

satellite image which does not allow high compression). You will also compare the quality to adjust

to the need during tests.

Pierre Huguet App Inventor tutorial project page 25

9.2. Add help button and choice of language

Add help text labels for monument display and map display and set them to non visible.

Toggle visible/invisible and click help button.

Set to invisible when map or monument display update

Pierre Huguet App Inventor tutorial project page 26

9.3. miscellaneous

Replace text by icons

Map Icon

Image Map icon

Hide pan buttons (not useful with drag) and center horizontal arrangement

Hide next/previous icons for monuments

Use monument location as default map center with a diplayMapCenteredOnMonum procedure

which is called instead from the monument display.

9.4. Switch to map/monument when canvas touched

Pierre Huguet App Inventor tutorial project page 27

9.5. Chapter 3 completed

Pierre Huguet App Inventor tutorial project page 28

10. Debug/Tune /Tests /Doc/terrain feedback

To be completed.

You are certainly aware that programmers – for most of their time - are debuggers rather than

developers! (That’s life folks and they come home late!)

Note : Once you have completed your first working app, look back on how much time you thought it

would take and how much it really did !!! and possible reasons ?

Can you find your own “good practices” and what’s your idea on existing ones (MVP, paper

prototyping, initial conception, …).

Image to canvas mapping :

After completing development and testing on a Nexus

7 (left) here is what comes out on a Nexus 5 (right)

with exactly the same android version. …

Surprise, surprise !

How can this be ? A large image on a screen that has

more pixels and a small image on a screen that has

less : it should be the contrary …

Well… as I am writing, I don’t know

What do you think ?

I don’t feel like changing the canvas height and width

from “automatic” to “fill parent” because this led to

bad result with image aspect ratio (e.g. height/width ratio). ….. And I do not

see how to cattch image dimensions, ……Well, maybe I will try with the

enclosing Vertical arrangement ? …does not seem to work either. ……

OK, if we can’t understand why let’s try to see when this happens: review

format and size of pictures … it then appears that images with both dimensions

below screen size are displayed OK, images with both dimensions above

screen size are reduced when displayed and pictures with height below screen

height and width beyond screen width are distorted on display …

That’s too bad, there is not much we can do to adjust multiple phones,

The best we found for now is to set the screen1 “sizing” attribute to “fixed”

rather than “resizing”. It will be less pretty with new phones, but will be OK

until correction of what seems to be a bug (we should however advise users

that there is image distortion for landscape style images – and they should use

portrait mode for now).

Icon size : fingers too fat for large screens / icons too fat for small screens !

Icons were too small on your first tablet so you increased pixel size. Now they are

too big and some hidden on the phone … All these pixels, percents, automatic

choice, … multiple screen sizes and resolutions (dpi : dots per inch) make it a little

hard.

There is a solution for this. Go back to the google design icons library

where each icon is available under different sizes.

Pierre Huguet App Inventor tutorial project page 29

Android sometimes manages the choice for you, but her you have to do it yourself : Go ahead and do

it …

Map aspect ratio and pixel size

Pixel size is computed in degrees but images are displayed in pixels which have the same width and

height in meters. The map would otherwise look distorted to us. But if one degree of latitude is

always 110 km (e.g. 40 000 km / 360°) one degree of longitude is less, between 110 km at equator and

0 km at the poles. Its value is around 110 km * cosine(latitude)

Let us suppose that the average pixel size has been computed at 45° of latitude (e.g. cosine = 0,707)

the pan function is then rewritten with different values for geographic (lat, long) pixel size.

“Global variables pointing at lists or stuctures” : a dangerous cocktail !

To be adjusted / TBD

Documentation

Good practices have not been applied here … in block documentation should have been used.

Pierre Huguet App Inventor tutorial project page 30

11. Chapter 5 : feedback from terrain and updates

To be completed / “Design thinking” principle must be reminded before going further.

Pair reviews should preferably be done at the end of each chapter and user review at latest at the end

of chapter 3. Addons or improvements should mainly come from user feedback.

People (including yourself) never use your app the way you thought they would !

Don’t take it bad (unless you are their boss), find what they liked and begin to surf.

OK I used it myself, but in fact I don’t really care about monuments (nor does anyone else), but I went

to an art exhibit and I never remember the name of the painters, I just have pictures with the date. So –

this time - I used my brand new app, put the name of the artist as the title and took a picture. Then I

got my database with picture, painter, location but – oups - no date !!!

 … I should add the date,

 besides this the save icon is very close to the reset button (and I goofed it twice),

 and there is far too much to validate for each new item. All this should be much more simple :

click new, take picture and input name (don’t tell me of the rest unless it went wrong)

So let’s get back to work :

 add a date-time parameter in the list

 add a location accuracy parameter in the list

 update date and time when creating new object (with a clock component)

 save list of objects each time a new item validated

 an may I would like to say a little word on what I see, whether it is a painting or monument,

…

So :

 add a clock and a sound recorder to components,

 add accuracy and date-time and soundFile indexes to the

monument list,

 add accuracy and date updates in the

udpateMonumentsAtIndex procedure,

 add date and time display in monument text label

in the displayMonument procedure,

Pierre Huguet App Inventor tutorial project page 31

12. Chapter 4 : other Addons - improvements

12.1. multilingual user manual

To be completed. use ISO 639-2 Code : eng, fra

Pierre Huguet App Inventor tutorial project page 32

12.2. Chapter 4 : Adding streetView

To be completed.

Pierre Huguet App Inventor tutorial project page 33

12.3. Re-organize init and exit

To be completed.

Pierre Huguet App Inventor tutorial project page 34

13. Global software View

Pierre Huguet App Inventor tutorial project page 35

14. Bibliography, Acronyms, Definitions, Acknowledgments

14.1. Bibliography

14.2. Acronyms

API Application Programming

Interface

DPI Dots Per Inch

GUI Graphic User Interface

HTTP HyperText Transfer Protocol

MVP Minimal Viable Product

TBD To be Defined Used when work has not been completed ,

(but should be sometimes …)

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

14.3. Definitions

Event handler

14.4. Acknowledgments

Tutorial canvas has been built from Dave Wolber’s scheme ref. TBD

Icons from google design … TBD

